

Population dynamics of *Chrysoperla zastrowi sillemi* (Esben-Petersen) fed with different hosts: Prospects for mass rearing and augmentative release

K. T. SHIVAKUMARA^{1,2*}, T. VENKATESAN², S. S. UDIKERI^{1*}, M. C. KEERTHI³, T. SUDHA¹, G. S. GURUPRASAD¹, S. G. RAYAR¹, and N. MOGER¹

¹University of Agricultural Sciences, Dharwad, Karnataka, India-580005

²Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, Karnataka, India-560024

³Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India-560089

*E-mail: shivagowdaakm731@gmail.com, ssudikeri@gmail.com

ABSTRACT: Accurate demographic projections are essential for identifying prey diets that enhance predator efficiency in augmentative biological control. The population of lacewing, *Chrysoperla zastrowi sillemi* (Esben-Petersen) (CZS) was projected on four hosts including sterilized and unsterilized *Corcyra cephalonica* eggs, *C. cephalonica* neonates, and *Tribolium castaneum* using TIMING-MSChart program. The largest adult population of *C. zastrowi sillemi* was noted when reared on unsterilized eggs, reaching around 57000 adults after 60 days, compared to 51000 adults when reared on sterilized eggs. Population projection curves confirmed a faster build-up on unsterilized eggs, primarily due to enhanced juvenile survival and early adult fecundity. However, reliance on unsterilized eggs entails cannibalism, biosecurity risks, including pathogen and parasitoid contamination. These findings demonstrate that diet quality decisively shapes predator demography and establish sterilized *C. cephalonica* eggs as the most practical and reliable prey resource for insectary production and augmentative release of *C. zastrowi sillemi*.

Keywords: Augmentative release, *Chrysoperla zastrowi sillemi*, life table, population projection,

INTRODUCTION

The green lacewings, *Chrysoperla* spp. (Neuroptera: Chrysopidae) are among the most important generalist predators used in integrated pest management (IPM) owing to their voracious feeding on soft-bodied insect pests such as aphids, mealybugs, whiteflies, thrips, and lepidopteran eggs (Smith and Jones, 2010; Zhao *et al.*, 2015). Among them, *Chrysoperla zastrowi sillemi* (Esben-Petersen) (CZS) has gained prominence in tropical and subtropical horticultural systems due to its strong reproductive capacity, ecological adaptability, and compatibility with sustainable pest management strategies (Kumar *et al.*, 2018; Oliveira *et al.*, 2020). As interest in environmentally friendly alternatives to chemical pesticides rises, augmentative biological control utilizing lacewing predators is becoming ever more important. The success of augmentative programs, however, is critically dependent on the ability to mass-produce predators at low cost, high quality, and in a biosecure manner (Van Lenteren, 2012). Currently, mass rearing of CZS largely relies on *Corcyra cephalonica* eggs as the principal factitious diet. Although unsterilized eggs support

rapid predator multiplication, they present serious drawbacks such as egg cannibalism, webbing, and contamination by microbial pathogens, parasitoids, and hyperparasitoids, which compromise colony health and sustainability (Patil and Deshmukh, 2013). Alternatives such as *C. cephalonica* neonates and *Tribolium castaneum* are sometimes explored, but their nutritional adequacy and efficiency in supporting predator growth remain poorly understood. Moreover, despite the recognized importance of diet quality, comprehensive demographic assessments quantifying its effect on lacewing performance are still limited.

In this study, we evaluated the life table parameters of *C. zastrowi sillemi* reared on four laboratory prey using the age-stage, two-sex life-table approach with the TWOSEX-MS Chart® software (Chi, 2020). In addition, population projection parameters were estimated with the TIMING-MS Chart® program to forecast predator growth and stage dynamics under different dietary regimes (Chi, 2021). Our integrative approach not only facilitates the identification of the most effective feeding regime for large-scale *C. zastrowi sillemi* rearing but also weighs practical concerns of colony health

and biosecurity. Ultimately, the findings aim to inform improved protocols for sustainable mass-production and augmentative deployment of *C. zastrowi sillemi* in horticultural ecosystems.

MATERIALS AND METHODS

Experimental setup

The demographic parameters as well as population projection of *C. zastrowi sillemi* were studied at the Division of Genomic Resources, ICAR- National Bureau of Agricultural Insect Resources (NBAIR), Bengaluru, India. All experiments were conducted under controlled laboratory conditions of 25 ± 1 °C temperature, $65 \pm 5\%$ relative humidity (RH), and a photoperiod of 14L:10D. *Corcyra cephalonica* was reared in disinfected boxes ($45 \times 45 \times 5$ cm) using standardized artificial diet. While the adults of *C. zastrowi sillemi* were maintained in muslin-lined oviposition chambers and provided with cotton swabs soaked in water, 50% honey solution, a commercial protein supplement (Pfizer Ltd., Mumbai), and a 1:1 yeast-sucrose mixture. Castor pollen grains were placed in small containers at the corners of rearing boxes (20×16 cm), and perforated brown paper sheets were used to stimulate egg laying. Eggs were collected at two-day intervals and incubated until hatching.

Prey treatments

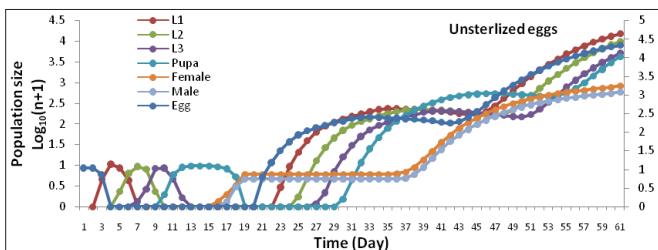
Four prey types were evaluated as larval diets, Sterilized *C. cephalonica* eggs (surface-sterilized with UV light exposure for 30 min), Unsterilized *C. cephalonica* eggs (freshly collected and used directly), *C. Cephalonica* neonates (newly hatched first-instar larvae) *T. castaneum* larvae (early instars (1-2 mm). Each CZS larva was provided ad libitum prey daily until pupation. Food was replenished daily, and leftover prey was removed.

Life-table study design

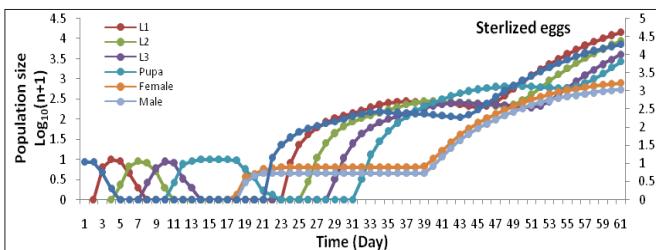
Newly hatched (< 12 h) *C. zastrowi sillemi* larvae were individually reared in plastic vials (4×5 cm) lined with moist filter paper to prevent desiccation. For each prey treatment, 120 individuals were monitored from egg hatching until adult death. Vials were checked every 24 h to record survival, developmental duration, and stage transitions (egg, larval instars, pupa, and adult). Daily fecundity, adult longevity, and pre-oviposition periods were recorded until female death.

Population projection

Stage-specific survival and fecundity data obtained from each prey diet were analysed using TIMING-MS Chart® (Chi, 2021) to generate population projection curves. Simulations of population growth and age-stage distribution of *Chrysoperla zastrowi sillemi* were conducted for 60 days under laboratory conditions to compare its long-term demographic performance on different diets. The program (Chi and Liu, 1985) estimates the population size that can be derived from life table parameters, with outputs including the total projected population and the age-stage structure, denoted as $P(t)$ (insect population projection). This approach provides a dynamic visualization of how populations change over time under different diet treatments.


$$P(t): \text{Insect population projection } P(t) = \sum_{j=1}^m \left(\sum_{x=0}^{\infty} c_{xj} n_{xj,t} \right)$$

RESULTS AND DISCUSSION


The *C. zastrowi sillemi* successfully completed development on all four prey types; however, significant differences were evident in survival and developmental times. Larvae reared on sterilized and unsterilized *C. cephalonica* eggs exhibited the shortest immature durations and highest survival (>85%), whereas those reared on *C. cephalonica* neonates and *T. castaneum* showed prolonged development with reduced survivorship (<60%). Faster development on *C. cephalonica* eggs indicates superior nutritional suitability, consistent with observations by Patil and Deshmukh (2013) that egg-based diets provide balanced nutrients for lacewing growth.

These results corroborate findings of Oliveira *et al.* (2020), who demonstrated that diet quality strongly influences reproductive capacity in *Chrysoperla* species. Enhanced fecundity on eggs reflects their high protein and lipid content, essential for oogenesis (Kumar *et al.*, 2018).

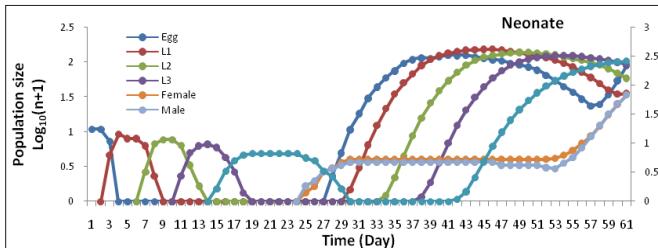

Population projection simulations demonstrated a steeper increase in population size on unsterilized eggs, driven by early fecundity and higher juvenile survival. The largest adult population of CZS was noted when reared on unsterilized eggs, reaching around 57000 adults after 60 days, compared to 51000 adults when reared on sterilized eggs (Fig. 1 and 2). However, the difference with sterilized eggs diminished over time, suggesting that sterilized eggs can ensure comparable long-term productivity while mitigating risks of cannibalism,

Fig. 1. Population projection of *Chrysoperla zastrowi sillemi* on unsterilized *Corcyra cephalonica* eggs

Fig. 2. Population predictions of *Chrysoperla zastrowi sillemi* on sterilized *Corcyra cephalonica* eggs

Fig. 3. Population predictions of *Chrysoperla zastrowi sillemi* on *Corcyra cephalonica* neonates

webbing, and contamination of unsterilized eggs. The lowest adult population was noted when reared on neonates of *Corcyra* and *T. castaneum* reaching around 600 and 300 adults after 60 days. The slower growth on neonates and *T. castaneum* highlights their unsuitability for large-scale rearing (Fig. 3 and 4).

Our population projection simulations revealed that (CZS) populations increased more rapidly when reared on unsterilized *C. cephalonica* eggs compared to sterilized eggs, largely due to higher juvenile survival and earlier fecundity. This trend is consistent with earlier studies on *Chrysoperla* spp., which repeatedly identified *C. cephalonica* eggs as the most suitable prey for mass rearing (Ramakrishnan *et al.* 1992; Balasubramaniam *et al.* 2001; Henry *et al.* 2010). Similar to our results, Harbi *et al.* (2025) reported that females reared on unsterilized *C. cephalonica* eggs exhibited higher fecundity than those reared on other prey sources. Although unsterilized eggs supported the highest adult population (57,000 after 60 days), our projections indicate that the difference with sterilized eggs (51,000) diminished over time. This suggests that sterilized eggs, despite initially reducing reproductive performance, can sustain comparable long-term productivity.

This observation agrees with findings of Atlihan and Chi (2008), who emphasized that prey quality strongly influences early growth trajectories but long-term fitness may stabilize across different diets. Moreover, using sterilized eggs has the practical advantage of reducing cannibalism, webbing, and contamination, a problem highlighted in mass-rearing facilities (Singh and Varma,

Fig. 4. Population predictions of *Chrysoperla zastrowi sillemi* on *Tribolium castaneum*

1986; Ghosh *et al.* 2016). Thus, our results support the recommendation that sterilized eggs are more suitable for large-scale and hygienic production systems. In contrast, the poorest performance was recorded on neonate larvae of *C. cephalonica* and *T. castaneum*, with adult populations reaching only 600 and 300 individuals, respectively, by day 60. The slower population growth on these diets corroborates earlier reports that chrysopids reared on neonates or flour beetle larvae experience prolonged development, reduced survival, and lower fecundity (Tauber *et al.* 2000; Chandran *et al.* 2018). The present results reinforce the conclusion that neonates and *T. castaneum* are unsuitable for large-scale rearing due to their poor nutritional quality and high handling costs. Overall, our findings strengthen the evidence that *C. cephalonica* eggs, particularly when sterilized, remain the most reliable food source for mass production of CZS, balancing biological performance with practical rearing considerations.

In conclusion, Sterilized *C. cephalonica* eggs provide a balanced solution for large-scale mass production of CZS, sustaining high demographic performance while minimizing risks of cannibalism, contamination, and handling challenges. Their practicality and reliability make them the most suitable prey resource for efficient insectary multiplication and augmentative biological control programs.

ACKNOWLEDGEMENT

The authors are thankful to the Head of the Department Entomology, UAS, Dharwad and Director, ICAR-NBAIR, Bengaluru, Karnataka and for providing the

research facilities. The authors would like to express their gratitude to Prof. Hsin Chi (Laboratory of Theoretical and Applied Ecology, Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China) for sharing the software (TWOSEX- MS Chart program) for data analysis. The authors express gratitude to Dr. Richa Varshany, Scientist at ICAR-NBAIR, Bengaluru, for supplying *Corcyra* eggs for growing the *Chrysoperla* predator for our study.

REFERENCES

Atlihan, R. and Chi, H. 2008. Temperature-dependent development and demography of *Scymnus subvillosus* (Coleoptera: Coccinellidae) feeding on *Hypera postica* (Coleoptera: Curculionidae). *Journal of Economic Entomology*, **101**(2): Pp. 325–333.

Balasubramaniam, M., Regupathy, A., and Baskaran, P. 2001. Evaluation of different factitious foods for mass multiplication of green lacewing, *Chrysoperla carnea* (Stephens). *Journal of Biological Control*, **15**(2):123-126.

Chandran, S., Singh, S. R. K. and Ballal, C. R. 2018. Comparative performance of *Chrysoperla zastrowi sillemi* on alternate factitious foods. *Phytoparasitica*, **46**:199-208.

Chi, H. 2020. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan. Available from: <http://140.120.197.173/Ecology>

Chi, H. 2021. TIMING-MSChart: a program for population projection based on age-stage, two-sex life table. National Chung Hsing University, Taichung, Taiwan. Available from: <http://140.120.197.173/Ecology>

Chi, H. and Liu, H. 1985. Two new methods for the study of insect population ecology. *Bulletin of the Institute of Zoology, Academia Sinica*, **24**:225-240.

Ghosh, A., Varma, G. C., and Ballal, C. R. 2016. Effect of sterilized and unsterilized *Corcyra cephalonica* eggs on the biology of *Chrysoperla zastrowi sillemi*. *Journal of Biological Control*, **30**(4):226-231.

Harbi, A., Chi, H. and Atlihan, R. 2025. Comparative fecundity and life table parameters of *Chrysoperla carnea* on different factitious prey. *Entomologia Generalis*, **45**(1):105-116.

Henry, C. S., Brooks, S. J., Johnson J. B., Venkatesan, T. and Duelli, P. 2010. The most important lacewing species in Indian agricultural crops, *Chrysoperla sillemi* (Esben-Petersen), is a subspecies of *Chrysoperla zastrowi* (Esben-Petersen) (Neuroptera: Chrysopidae). *Journal of Natural History*, **44**(41-42):2543-2555.

Kumar, P., Meena, R. S. and Singh, B. 2018. Influence of diet quality on reproduction of green lacewings. *Journal of Biological Control*, **32**:199-205.

Oliveira, R. L., Souza, B. and Torres, J. B. 2020. Diet-mediated reproductive efficiency in *Chrysoperla* spp. *Entomologia Experimentalis et Applicata*, **168**:512-520.

Patil, S. V. and Deshmukh, S. D. 2013. Influence of unsterilized *Corcyra cephalonica* eggs on mass rearing of *Chrysoperla zastrowi sillemi*. *Journal of Biological Control*, **27**(1). Pp. 65-69.

Ramakrishnan, N., Jayaraj, S., Babu, P.C. 1992. Effect of different factitious foods on the development and reproduction of green lacewing, *Chrysoperla carnea* (Stephens). *Journal of Biological Control*, **6**(2):113-116.

Singh, S. P. and Varma, G. C. 1986. Studies on the laboratory mass multiplication of green lacewing, *Chrysoperla carnea* (Stephens) on eggs of *Corcyra cephalonica* Stainton. *Journal of Biological Control*, **1**(1):51-54.

Smith, J. and Jones, M. 2010. Role of green lacewings in integrated pest management. *Crop Protection*, **29**:142-150.

Tauber, M. J., Tauber, C. A., Daane, K. M. and Hagen, K. S. 2000. Commercialization of predators: recent lessons from green lacewings (Neuroptera: Chrysopidae: Chrysoperla). *American Entomologist*, **46**(1):26-38.

Van Lenteren, J. C. 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. *Biocontrol*, **57**:1-20.

Zhao, Z., Wang, J. and Li, Y. 2015. Prey quality effects on life table parameters of *Chrysoperla carnea*. *Pest Management Science*, **71**: 144152.

MS Received: 12 May 2025

MS Acceptance: 08 June 2025