(C)(C)

RESEARCH NOTE

Efficacy of biopesticides against sucking insect pests of chilli (Capsicum annuum L.) and their impact on fruit yield

N. AJITH 1*, WALUNIBA1, PANKAJ NEOG1, SUSANTA BANIK2 and SENTIRENLA JAMIR3

¹Department of Entomology, ²Department of Plant Pathology, ³Department of Horticulture School of Agricultural Sciences and Rural Development, Nagaland University, Medziphema, India *E-mail: ajith.ento@gmail.com

ABSTRACT: Efficacy of different biopesicides was evaluated against major sucking insect pests of chilli (*Capsicum annuum* L.) under foot hills of Nagaland, India during November to May 2021-22. The overall average per cent reduction of sucking insect pest population indicated that Spinosad 45% SC (67.07%) was proved to be significantly superior to control followed by Neem seed powder pellet formulation (52.14%). Among Entomopathogenic fungi *Lecanicillium lecanii* (44.46%) was the most effective followed by *Beauveria bassiana* (42.91%) and *Metarhizium anisopliae* (40.84%). Pongamia oil (32.92%) was found to be the least effective among all the treatments. Spinosad 45% SC was found to have high cost benefit ratio (1:1.82) followed by *Lecanicillium lecanii* (1:1.75), *Beauveria bassiana* (1:1.62), Neem seed powder pellet formulation (1:1.47), *Metarhizium anisopliae* (1:1.44) and Pongamia oil (1:0.99). To ensure healthy and sustainable food production, use of chemical insecticides should be reduced and there is an increasing need to utilize biopesticides available and to develop new biopesticides with different mode of action.

Keywords: Biopesticides, Chilli, Efficacy, Entomopathogens, Sucking Pests

In India, Chilli (Capsicum annuum L.) is a wellknown spice and vegetable crop extensively cultivated in tropical and sub-tropical regions throughout the year. Chilli is commercially cultivated for its pungent fruits. Capsaicin, the active ingredient of spice possesses several medicinal properties like antioxidant, anti-mutagenic and anti-carcinogenic effects with the ability to boost immune system (Saxena et al., 2016). Chilli is infested by various insect pests from the time of planting to post harvest. Among 39 genera and 51 species of insects and mites infesting chilli crop (Kumar et al., 2020), thrips (Scirtothrips dorsalis Hood), aphids (Aphis gossypii Glover) and whiteflies (Bemisia tabaci Genn) are the most important sucking pests which has a negative impact on chilli production. They are extremely polyphagous in nature and feed by sucking sap from leaves, tender shoots, flower buds and fruits. These pests have vast host range and short life cycle which make them difficult to manage. Kandasamy et al., 1990 indicated that the yield loss due to insect pests of chilli range from 50-90 per cent.

Non-chemical insect pest management is an environmentally conscious approach to manage insect pests. It contributes to the sustainability of agricultural output and also minimizes crop production costs. In the past few decades, non-target organisms and the

environment has been affected perniciously by the injudicious use of insecticides. The best suitable alternate is use of natural products such as botanicals and bioagents. This suggests that developing an efficient non-chemical insect pest management ensures healthy food production.

The experiment was conducted in the experimental farm, Department of Entomology, School of Agricultural Sciences and Rural Development, Nagaland, India during November to May 2021-22 in randomized block design with eight treatments and each replicated thrice. The treatments are two botanical pesticides Neem seed powder pellet formulation (NSPPF) (30 g L-1) and Pongamia oil (2 mL L⁻¹) and four microbial pesticides namely Lecanicillium lecanii (5 g L-1), Metarhizium anisopliae (4 g L-1), Beauveria bassiana (5 g L-1) and Spinosad 45% SC (0.25 mL L⁻¹) along with Imidacloprid 17.8% SL (0.4 mL L-1) as chemical check and untreated control. The seedlings of chilli variety KSP-1347 NIRMITI were transplanted to the experimental plots of 3.5 m \times 2.0 m by adopting the spacing of 60 cm \times 45 cm. Two sprays were given at 85, 110 days after transplantation. Before and after the biopesticides spray, population of sucking pests was taken on five randomly selected plants from each plot at three, five and seven days after treatments. The population of sucking pests

Table 1. Effect of different biopesticides on sucking pests of chilli

First S spray t 6.96 10.13 8.44 8.69 8.69 8.46	econd M	Ave	Average %	three leaves	three leaves	Ĉ.	Average %	Mean	Mean no. or whiteny, three leaves	(cilly)	Average %	Overall
6.96 10.13 8.44 8.69 8.69 4.60	spray	Rec Mean	Reduction	First spray	Second spray	Mean	Reduction	First spray	Second spray	Mean	Reduction	Reduction
8.44 8.69 8.46 8.46 4.60	9 69.9	6.83 4	49.58	8.01	7.86	7.93	53.05	4.13	4.62	4.38	53.78	52.14
8.44 8.69 8.46 4.60	9.96 10	10.05	32.73	12.58	12.69	12.64	32.68	7.11	7.87	7.49	33.36	32.92
8.69	8.11 8	8.28 4	42.25	10.04	88.6	96.6	45.35	5.67	5.75	5.71	45.78	44.46
8.46	8.40 8	8.55 3	39.54	10.78	10.58	10.68	41.55	6.27	6.11	6.19	41.43	40.84
4.60	8.38 8	8.42 4	41.11	10.29	10.40	10.35	43.68	60.9	5.98	6.03	43.96	42.91
,	4.56 4	4.58 6	63.95	5.13	5.49	5.31	67.32	2.55	2.73	2.64	69.93	67.07
Imidacioprid 17.8% SL 3.93 3.	3.78 3	3.86	69.72	4.67	4.89	4.78	72.75	2.11	2.34	2.23	74.18	72.22
Control 14.22 14.	14.18 14	14.20	0.00	17.80	18.47	18.14	0.00	11.16	11.13	11.14	0.00	0.00
C.D. $(P=0.05)$ 0.31 0.4	0.48			0.32	0.45	ı	1	0.39	0.42	,	ı	1
SE(m)± 0.10 0.10	0.16			0.11	0.15			0.13	0.14		ı	

viz., thrips, aphids and whiteflies was counted on three leaves per plant from upper, middle and lower positions during morning hours as per the method suggested by Satpathy (1973) by using 10X magnifying lens. Matured chilli fruits were harvested and weighed to get yield data. Then the data were subjected to statistical analysis of variance (ANOVA).

Efficacy of different biopesticides was evaluated at three, five and seven days after spraying against sucking pests namely thrips, aphids and whiteflies. From the present findings, it is evident that all the treatments were statistically superior to control. The overall average per cent reduction of sucking pests (Table 1) indicated that Spinosad 45% SC was proved to be significantly superior in controlling sucking pests population with the per cent reduction of 67.07%. Neem seed powder pellet formulation (NSPPF) was moderately effective against sucking pests with the per cent reduction of 52.14%. Among Entomopathogenic fungi Lecanicillium lecanii (44.46%) was the most effective followed by Beauveria bassiana (42.91%) and Metarhizium anisopliae (40.84%). Pongamia oil (32.92%) was found to be the least effective among all the treatments. The chemical check Imidacloprid 17.8% SL recorded the maximum per cent reduction of 72.22 per cent.

Entomopathogenic fungi (EPF) are reported to control the pest populations by the release of spores and mycotoxins such as Beauvericin, Beauverolides and Destruxins (Gabarty et al., 2014). Study of Samota et al. (2017) is in close proximity with the present results, who found that Spinosad and NSKE were moderately effective against thrips, followed by B. bassiana (34.86%) and M. anisopliae (33.60%) both are at par with each other. Borkakati et al., (2019) revealed that the population of Aphis gossypii, Scirtothrips dorsalis and Bemisia tabaci were significantly reduced by Imidacloprid 17.8% SL closely followed by Beauveria bassiana. Harshita et al., (2019) indicated that spinosad @ 0.3 mL L⁻¹ was graded as the most effective treatment followed by azadirachtin @ 5 mL L-1 and B. bassiana @ 5 mL L-1 in reducing whitefly population. Singh and Kaur (2020) reported that EPF are the most efficient in suppressing aphid and whitefly populations on vegetable crops. Nimbalkar et al., (2022) found that Neem oil @ 5 mL L-1 was proved very effective in management of thrips and whiteflies followed by NSKE 5%, Verticilium lecanii @ 4 g L-1 and *Metarrhizium anisopliae* (a), 4 g L⁻¹ respectively.

The fruit yield obtained from various treatments were statistically analyzed and presented in Table 1. All the biopesticides produced comparatively higher yield than untreated control (30.1 q ha⁻¹). Among the biopesticides,

spinosad 45% SC (53.7 q ha⁻¹) recorded the highest yield followed by Neem seed powder pellet formulation (50.5 q ha⁻¹), L. lecanii (49.2 q ha⁻¹), Beauveria bassiana (46.9 g ha⁻¹), Metarhizium anisopliae (43.4 g ha⁻¹) and Pongamia oil (35.3 q ha⁻¹). Spinosad 45% SC was found to have high benefit cost ratio (1.82) followed by Lecanicillium lecanii (1.75), Beauveria bassiana (1.62), Neem seed powder pellet formulation (1.47), Metarhizium anisopliae (1.44) and Pongamia oil (0.99). The yield and cost benefit ratio of biopesticides treatment does not differ much than the chemical check, Imidacloprid 17.8% SL (56.4 q ha⁻¹ and 1:2.20). Foliar spray of microbial pesticides were resulted in population reduction of sucking pests below economic injury level and had positive effects on yield compared to botanical pesticides. EPF present on rhizosphere region influences nitrogen availability thus promotes plant growth (Behie and Bidochka 2014). To ensure healthy food production, use of chemical insecticides should be reduced and there is an increasing need to utilize biopesticides available and to develop new products with different modes of action.

REFERENCES

- Behie, S. W. and Bidochka, M. J. 2014. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. *Applied and Environmental Microbiology*, **80**: 1553–1560.
- Borkakati, R. N., Saikia, D. K. and Ramanujam, B. 2019. Evaluation of entomopathogenic fungi against sucking pests of Bhut Jalakia. *Journal of Biological Control*, **33**(2): 155-159.
- Gabarty, A., Salem, H. M., Fouda, M. A., Abas, A. A. and Ibrahim, A. A. 2014. Pathogenicity induced by the entomopathogenic fungi *Beauveria bassiana* and *Metarhizium anisopliae* in *Agrotis ipsilon* (Hufn.). *Journal of Radiation Research and Applied Science*, 7(1): 95-100.
- Harshita, A. P., Saikia, D. K. and Devee, A. 2019. Population dynamics and management of whitefly, *Bemisia tabaci* in tomato ecosystem, *Solanum lycopersicum* L. *Journal of Entomology and Zoology Studies*, 7(2): 1232-1235.
- Kandasamy, C., Mohansundaram, P. and Karuppuchamy. 1990. Evaluation of insecticides for the control of Scirtothrips dorsalis Hood, on chillies (Capsicum annum L.). Madras Agricultural Journal, 77: 169-172.

- Kumar, S., Awasthid, A. K., Kerketta, A., Shyam, R. and Raj, S. 2020. Seasonal incidence of chilli thrips (*Scirtothrips dorsalis* Linn.) on chilli & its correlation with different abiotic factors. *International Journal of Entomology Research*, **5**(5): 110-112.
- Nimbalkar, N. K., Sonkamble, M. M. and Matre, Y. B. 2022. Efficacy of different biopesticides against major insect pests of chilli (*Capsicum annuum* L.). *Journal of entomological research*, **46**: 77-82.
- Samota, R. G., Jat, B. L. and Choudhary, M. D. 2017. Efficacy of newer insecticides and biopesticides against thrips, *Scirtothrips dorsalis* Hood in chilli. *Journal of Pharmacognosy and Phytochemistry*, **6**(4): 1458-1462.

- Satpathy, J. M. 1973. Field tested with granulated insecticides for the control of *L. orbonalis. Indian Journal of Agriculture Science*, **43**: 1081-1086.
- Saxena, A., Raghuwanshi, R., Gupta, V. K. and Singh, H. B. 2016. Chilli anthracnose: the epidemiology and management. *Frontiers in Microbiology*, 7: 1527.
- Singh, H. and Kaur, T. 2020. Pathogenicity of entomopathogenic fungi against the aphid and the whitefly species on crops grown under greenhouse conditions in India. *Egyptian Journal of Biological Pest Control*, **30**(1): 1-9.

MS Received: 20 April 2023 MS Accepted: 27 May 2023